
International Journal of Theoretical Physics, Vol. 40, No. 1, 2001

Clifford Modules and Generalized Dirac Operators
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We present a review of generalized Dirac operators with special focus on the
Bochner–Lichnerowicz–Weitzenböck (BLW) decomposition of the square of a
Dirac operator. We discuss how a specific Dirac operator, which we call the
Pauli–Dirac operator, is related to electric charge in a similar way that the
Dirac–Yukawa operator is related to mass. By joining together both operators,
we end up with a new Dirac operator which we call the Pauli–Dirac–Yukawa
(PDY) operator. This operator, which plays a crucial role in the geometrical
description of the Standard Model of particle physics, has a specific structure.
We discuss the BLW decomposition of the “real form” (i.e., the real part of the
modulus) of the PDY.

1. INTRODUCTION

The basic property of a Dirac operator is that it is the square root of a
Laplacian-type operator. Dirac’s idea was to introduce a first-order differential
operator that can be considered as the square root of a second-order operator
similar to the complex number iu 2 v, which is the square root of u2 1 v2

5 (iu 2 v)(2iu 2 v).
We will start with a summary of the main features of generalized Dirac

operators and review the Bochner–Lichnerowicz–Weitzenböck (BLW)
decomposition of the square of a certain class of Dirac operators. This decom-
position may be generalized to arbitrary Dirac operators. While there are
several decomposition formulas for generalized Dirac operators, we will focus
on a specific decomposition formula which is particularly geometric.

In the second part of the paper we discuss two specific generalized
Dirac operators, the Dirac–Yukawa operator and the Pauli–Dirac operator.
These two operators are of significance because the Dirac–Yukawa operator
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gives rise to the dynamics of the fermions and the Pauli–Dirac operator
encodes the dynamics of the gauge fields. It is then natural to bring both
Dirac operators together to define a new Dirac operator, called the Pauli–
Dirac–Yukawa operator (PDY). In fact, this operator not only defines the
fermionic action, but also the bosonic functional of the Standard Model of
elementary particles (Tolksdorf, 1998). For this purpose, one needs the BLW
decomposition of the “real form” of the Pauli–Dirac–Yukawa operator. This
decomposition has a generic form which we will discuss, and which finally
will represent a synthesis of both parts of the present paper. In the light of
Dirac operators, the two different concepts of mass and of electric charge
actually correspond to two different Z2-gradings. As we will see in the second
part of the paper, this superstructure is very basic for the PDY to be a Dirac
operator in the generalized sense according to Atiyah and Singer (1963) and
Atiyah and Bott (1968).

2. A BRIEF HISTORICAL SURVEY

When Dirac introduced his equation in 1928/30, he aimed at relativisti-
cally generalizing the Schrödinger wave equation of quantum mechanics
(Dirac, 1928, 1930). With respect to this original goal, he actually failed.
However, his equation correctly describes some fundamental properties of
an electron, e.g., its half-integer angular momentum and its magnetic moment.
Moreover, his equation predicted the existence of a new particle, the positron,
of exactly the same mass as the electron, but with opposite electric charge.
Today, the existence of “antiparticles” is well established. However, at the
time when Dirac introduced his equation, only a few elementary particles
were known and the prediction of a new particle was extremely speculative.
When the positron was actually found in 1932/33 by Anderson (Anderson,
1932, 1933) this was probably one of greatest triumphs in theoretical physics.
Dirac’s equation

gmgn 1 gngm 5 2gmn, (igm­m 2 m)c(x) 5 0, ­⁄ [ gm­m (1)

became one of the most fundamental equations in physics. The fundamental
relations that the Dirac matrices gm (m 5 0, . . . , 3) have to satisfy are known
as the Clifford algebra #1,3 over the indefinite quadratic space R1,3. One of
the most basic properties of the Dirac operator is that it can be considered
as the “square root” of the wave (Laplace) operator gmn ­m­n. When using
the physical “principle of minimal coupling,” it becomes more or less straight-
forward to generalize ­⁄ to a “gauge-covariant” operator, which is known
today as the “twisted Dirac operator” ­⁄ A. Generalizing the Dirac operator to
nonflat spacetimes, in contrast, was not evident before Cartan introduced his
“repere mobile” formalism. The mathematical question that arose was how
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to convert the Dirac operator to a globally defined first-order differential
operator on a general (pseudo) Riemanian manifold. For this purpose, the
notion of a spin manifold was introduced and a new door was opened to study
geometrical and topological properties of manifolds using a local differential
operator. Today this is called spin geometry. The Laplace operator encodes
geometrical and topological information (according to Hodge’s and de Rham’s
theory and the heat kernel associated with the Laplace operator). However,
the Dirac operator proved to be a more fundamental object in this respect.
Since the Laplacian is a symmetric operator, its index vanishes. Moreover,
based on the fact that every Fredholm operator on a compact manifold can
in some sense be deformed into a Dirac operator, the latter incorporates a
very deep relation between analysis and topology. The Dirac operator joins
seemingly different mathematical fields like geometry, topology, and analysis.
This is demonstrated very impressively by the index theorems by Atiyah and
Singer and the corresponding generalizations (see, for instance, Berline and
Getzler and Verne, 1996). Physicists used the Dirac equation to develop
quantum field theory. This theory permits describing both the photon (gauge
field) and the electron/positron (spinor) by use of the same formalism. This
formalism fundamentally differs from quantum mechanics in that the number
of particles within a certain physical process is no longer a conserved quantity.
This is an experimentally well-established fact which has always been
encoded in Dirac’s equation and in the notion of particles and antiparticles.
Another interesting aspect in quantum field theory was that physicists found
certain relations, called anomalies, which turned out to be the index of a
twisted Dirac operator. The operator invented by Dirac in 1928 has not only
joined different fields in mathematics and physics, but has also brought more
closely together physics and mathematics as a whole.

So far we have only considered twisted Dirac operators ­⁄ A defined on
a spin manifold M as a mathematical generalization of the operator originally
introduced by Dirac. In fact, this type of operator plays a fundamental role
in spin geometry. The point is that every representation space % (bundle) of
the Clifford algebra (bundle) over a spin manifold is isomorphic to a twisted
spinor bundle over M (details of the following will be given in the next
section). From a physical point of view, a section into such a twisted spinor
bundle geometrically models a “particle with internal degrees of freedom”
(a particle with generalized charges). However, a twisted spinor bundle is
but a special case (but may be the most important one!) of a general Clifford
module bundle % over an arbitrary manifold. There are no topological obstruc-
tions for a Clifford algebra bundle to exist. Indeed, the Clifford bundle Cl(M )
may be the most natural nontrivial algebra bundle associated with a given
(pseudo) Riemannian manifold (M, g). If the dimension of M is even, it turns
out that there exists a distinguished class of connections called Clifford



194 Tolksdorf

connections on every Clifford module bundle % and a distinguished class of
Dirac operators (also denoted by ­⁄ A) uniquely associated with these connec-
tions. Atiyah (1988) and Lichnerowicz (1963) may have been the first to
introduce the notion of generalized Dirac operators D on an arbitrary Clifford
module bundle %. Such a generalized Dirac operator can always be written as

D 5 ­⁄ A 1 F (2)

where F is a zero-order operator. Interestingly, operators of this form are
very well known in physics for special F’s. In fact, one such operator has
been introduced by physicists to gauge-invariantly describe the masses of
the fermions (Yukawa coupling). This operator F generalizes the positive
real number m in Dirac’s equation (1). The Dirac operator for these particular
F’s is called the Dirac–Yukawa operator. In turn, the Dirac–Yukawa operator
plays a fundamental role in Connes’ noncommutative geometry (Connes,
1994). Another interesting operator of the form of a generalized Dirac operator
that was introduced by physicists is given by F :5 igmgn Fmn. Here, F denotes
the curvature of the connection form A. In this case we call the generalized
Dirac operator the “Pauli–Dirac operator,” an operator originally introduced
to correctly describe the anomalous magnetic moment of protons which
significantly differs from the value 2 as can be deduced from ­⁄ A. It can be
shown that the Wodzicki residue of the pseudo-differential operator D22 (in
more physical terms: the “trace of the propagator” of the Pauli–Dirac operator)
is proportional to the combined Einstein–Hilbert–Yang–Mills functional
(Ackermann and Tolksdorf, 1996a, b). We will consider the Dirac–Yukawa
and the Pauli–Dirac operators in more detail in Section 5.

Generalized Dirac operators are not only interesting objects used in
mathematics and physics, they also serve as a joining object to bring mathe-
matics and physics more closely together.

3. THE CLIFFORD FRAME

For this section we refer to the book by Berlin et al. (1996).
Let us denote by M(p, q) a smooth manifold of dimension m :5 p 1 q

together with a smooth, nondegenerate, symmetric, bilinear form g of signa-
ture s :5 p 2 q. A structure naturally associated with M(p,q) is the Clifford
bundle: Cl(M ) →t

M. Thus, the Clifford bundle is an algebra bundle with
standard fiber equal to the Clifford algebra #p,q. Also let us denote by
# →p M a smooth (Z2-graded) vector bundle and by G(%) the C`(M ) module
of smooth sections into %. A generalized Laplacian H: G(%) → G(%) is a
second-order differential operator such that for every smooth function f P
C`(M ), we have
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[[H, f ], f ] 5 62g(df, df ) (3)

A generalized Dirac operator (operator of Dirac type) is any first-order
differential operator D: G(%) → G(%) such that D2 is a generalized Laplacian.
In the case where the vector bundle % is Z2-graded, we demand the operator
D to be odd. It can be shown that an (odd) first-order differential operator
D is a generalized Dirac operator if and only if it satisfies the fundamental
relation

[D, f ] 5 g(df ) (4)

such that (g(df ))2 5 6g(df, df ) holds true for every smooth function f P
C `(M ) (Berline et al., 1996). According to the relation (4), such an operator
D induces a Clifford map g: T*M → End(%) and thus (%, g) becomes a
Clifford module bundle over (M, g).

In what follows, we will focus on the even-dimensional case (M, g) [
M (0,2n), where % 5 %+ % %2 denotes a Z2-graded Clifford module bundle
over M with respect to the Clifford mapping g. We assume the induced
Clifford action (which is also denoted by g) to be even, i.e., g(Cl+)%6 , %6

and g(Cl2)%6 , %7. The Clifford algebra is simple and the algebra bundle
of bundle endomorphisms on % decomposes as follows:

End(%) . Cl(M ) ^ EndCl(%) (5)

where EndCl(%) :5 {s P End(%).[g(a), s]6 5 0, for all a P Cl(M )} denotes
the “supercommutant” with respect to the Clifford map g. Because of this
decomposition, a distinguished class of connections exists on any Clifford
module bundle (%, g) which is characterized by the condition

[¹%
j , g(a)] 5 g(¹Cl

j a) (6)

for all smooth vector fields j P G(TM ) and smooth sections a P G(Cl(M )).
Here, ¹Cl denotes the induced Levi-Civita connection on the Clifford bundle.
In other words, connections satisfying relation (6) are distinguished by their
compatibility with the Clifford action g. They are thus called Clifford connec-
tions. If (M, g) denotes a spin manifold, any Clifford module bundle (%, g)
is (isomorphic to) a twisted spinor bundle over (M, g). That is, there exists
a vector bundle E →

pE
M such that % . S ^ E, where S denotes the (total

space of the) spinor bundle over M once a spin structure has been fixed. As
a consequence, the (complexification of the) Clifford bundle will be identified
with End(S) and the supercommutant EndCl(%) with End(E). Therefore, in
the case of a spin manifold, we obtain End(%) . End(S) ^ End(E). It is
easily verified that any Clifford connection is a tensor product connection,
i.e., it reads ¹% 5 ¹S ^ IdE 1 IdS ^ ¹E, where ¹S denotes the spin connection
on the spinor bundle S and ¹E denotes any connection on the corresponding
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vector bundle E. Therefore, the Clifford connections on a twisted spinor
bundle are parametrized by the connections on the vector bundle E. This
holds true even in the more general case of an arbitrary Clifford module. To
make this more precise, let us denote by !(%) the set of all (even) connections
on %. This set is an affine space which is modeled on the vector space of
even one-forms V1(M, End+(%)). Because of the decomposition (5), there is
a certain affine subspace !Cl(%) , !(%) of the set of all connections on %.
This affine subspace is correspondingly modeled on the vector space
V1(M, End1

Cl(%)). As a result, the Clifford connections on an arbitrary Clifford
module bundle are parametrized by the vector space V1(M, End1

Cl(%)). Let
¹% be a connection on the Clifford module bundle (%, g). A well-known
construction to associate a Dirac operator with a given connection is

¹⁄ %: G(%) →¹
%

G(T*M ^ %) \ G(Cl(M ) ^ % →g
G(%) (7)

It is straightforward that the operator ¹⁄ % [ g(¹% ) is odd and indeed satisfies
the fundamental relation (4). There exists a distinguished class of Dirac
operators on a Clifford module bundle, namely Dirac operators associated
with Clifford connections ­A P !Cl(%). In what follows, we will denote such
a Dirac operator by ­⁄ A , where A P V1 (M, End1

Cl(%)). It is called the twisted
Dirac operator. In the particular case that (M, g) denotes a spin manifold,
the Dirac operators associated with Clifford connections are called twisted
spin Dirac operators.

We will show how a given Dirac operator can be represented by a
connection. Let (%, D) denote a Clifford module bundle over (M, g), where
the Clifford action g is defined by some Dirac operator D with the help of
the fundamental relation (4). Any other Dirac operator is considered to be
compatible with the now-defined Clifford action g if it also satisfies the
fundamental relation (4). Let us denote by $(%) the set of all compatible
Dirac operators on the Clifford module (%, D). This set is again an affine
space modeled on the vector space of odd zero-forms V0(M, End2(%)). There
is a canonical one-form j P V1(M, End2(%)) which satisfies the relations
¹T*M^End(%)j [ 0 for all Clifford connections ­A , and g(j) 5 Id% (Tolksdorf,
1998). Therefore, we obtain a mapping

dj: V0(M, End2(%)) → V1(M, End+(%))

F ° j ∧ F (8)

and thus can associate with every Dirac operator D̃ P $(%) a connection
¹̃% :5 ­A 1 dj(D̃ 2 ­⁄ A) such that D̃ 5 ¹⁄̃ %. However, since dj is a right
inverse of g, the correspondence between Dirac operators and connections
is not one-to-one. In fact, it can be shown that $(%) . !(%)/Ker(g) (Tolks-
dorf, 1998). Consequently, every Dirac operator is associated with a whole
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class of connections on %. Note that every connection class possesses at most
one Clifford connection. Thus, the corresponding connection class of a twisted
Dirac operator has a canonical representative. Two connections defining the
same Dirac operator are not in general related to each other by a gauge
transformation. Although the correspondence between Dirac operators and
connections is not one-to-one, there exists a “natural connection” that is
associated with a given Dirac operator. Every Dirac operator D P $(%) is
of the form

D 5 ­⁄ A 1 F (9)

with F P V0(M, End2(%)). In addition, any Dirac operator is associated with
a one-form vF defined by

vF :5 dj(F) (10)

which we call the Dirac form. Let ­A P !Cl(%) denote the Clifford connection
uniquely associated with the twisted Dirac operator ­⁄ A. We then define the
connection

¹̃% :5 ­A 1 vF (11)

and call it the “natural connection” associated with the Dirac operator D.

4. THE BLW DECOMPOSITON

We will discuss the BLW decomposition of a generalized Dirac operator.
We start by summarizing the decomposition formulas of various specific
examples of Dirac operators. The corresponding decomposition formulas are
named after Weitzenböck, Bochner, and Lichnerowicz.

In this section, we consider various examples of Dirac operators. By its
very definition, the square of a Dirac operator is a generalized Laplacian. It
is therefore natural to ask whether these Laplacians have a common structure.
In the case of Dirac operators associated with Clifford connections, this will
be answered affirmatively through the decomposition formulas named after
Bochner, Lichnerowicz, and Weitzenböck. These formulas are special cases
of a general decomposition formula which can be applied to arbitrary Dirac
operators. We will call this decomposition formula the (generalized) Bochner–
Lichnerowicz–Weitzenböck decomposition formula (BLW decomposition).
While we are aware that various kinds of BLW decomposition formulas for
arbitrary operators of the Dirac type exist, we will only discuss a specific
decomposition formula of the BLW type in this section. This formula is
particularly geometric and it very transparently generalizes the original Lich-
nerowicz formula.
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As a first example, we consider the case of the exterior algebra bundle
L*(T*M ) → M. The set of sections is denoted by V*(M ), where L*(T*M )
:5 %pPZ Lp(T*M ). If we divide L*(T*M ) into even and odd forms, it
becomes a Z2-graded vector bundle. Moreover, using, respectively, the exte-
rior and interior multiplication extv and intv , with v P TM .g T*M \

L*(T*M ), the Z2-graded vector bundle L*(T*M ) becomes a Clifford module
bundle over (M, g). We will use the Gauss–Bonnet operator D :5 d 1 d*
as Dirac operator, where d* denotes the formal adjoint of d with respect to
the natural scalar product on V*(M ) { a, b ° *M a ∧ ∗ b. Of course, in
this case, the square of D gives the well-known Laplace–Beltrami operator
D :5 (dd* 1 d*d ). The Weitzenböck decomposition formula relates this
Laplacian to the Laplacian ¹*¹. Here, the latter is a special case of the so-
called Bochner Laplacian, for which we will give a more general definition
below. The operator ¹ denotes the lifted Levi-Civita connection on L*(T*M ),
and ¹* denotes its formal adjoint. It can be shown that the difference of both
Laplacians is given by a zero-order differential operator. The Weitzenböck
formula gives the relation (Rosenberg, 1997; Lawson and Michelson, 1997;
Berline et al., 1996)

D 5 ¹*¹ 1 5 (12)

where 5 denotes the curvature operator. With respect to an orthonormal
frame (ei) in T* M, it is given by

5 5
rM

4
1

1
8

Rijklgig jgkgl (13)

Here, gi :5 exti 2 inti , gi :5 exti , 1 inti , and, respectively, Rijkl denote the
components of the curvature tensor with respect to the orthonormal basis (ei)
and rM the scalar curvature. Note that [gi, g j]+ 5 22dij, whereas [gi, g j]+ 5
12dij, where we have used the common notation gi [ g(e)i). If restricted to
one-forms, the formula (12) is called the Bochner formula. In this case,
the curvature operator 5 is given by the Ricci curvature and it becomes
straightforward to prove that a (compact and orientable) manifold with non-
vanishing first de Rham cohomolgy group admits no metric with positive
Ricci curvature. This proof represents one of the famous “vanishing theorems”
of the Bochner type, based on a decomposition formula similar to Bochner’s
formula (Rosenberg, 1997; Gilkey, 1995). By using the Weitzenböck formula,
a simple proof of the fundamental elliptic estimate (Garding’s inequality)
can be achieved (see again, for instance, Rosenberg, 1997, and Gilkey, 1995).
Also, the heat kernel proof of the Chern–Gauss–Bonnet theorem, which is
known as a special example of the far more general Atiyah–Singer index
theorem, makes extensive use of formula (12).
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As a second example, we discuss the twisted spin Dirac operator. Let
therefore (M, g) denote a spin manifold and E →

pE
M a smooth vector bundle

with connection ¹E. Then % :5 S ^ E →p M, with S denoting the (total space
of the) spinor bundle (once we have fixed the spin structure), naturally
becomes a Clifford module bundle. Indeed, as mentioned in the last section,
Cl(M )C . End(S) and the Clifford action g is defined by left multiplication.
The twisted spin Dirac operator is defined, correspondingly, as ­⁄ A 5 g(¹S^E ).
The decomposition of (g(¹S^E ))2 is given by the Lichnerowicz formula
(Lichnerowicz, 1963; Lawson and Michelson, 1997; Berline et al., 1996),

(g(¹S^E))2 5 2trg ¹T*M^% ¹% 1 5 (14)

5 :5 1–4 rM 1 g(F%/S
¹ ) (15)

Here, F%/S
¹ :5 F%

¹ 2 RS ^ IdE denotes the relative curvature, where F%
¹ is the

total curvature on % 5 S ^ E with respect to the connection ¹S^E and RS

denotes the curvature on the spinor bundle with respect to the spin connection
¹S. In the case at hand, the relative curvature is fully determined by the
curvature FE of the vector bundle E with respect to the connection ¹E. For
this reason, the relative curvature is also called the twisting curvature. It is
this point which becomes different when more general Dirac operators are
considered (see below). In what follows, we will denote by F%/S

¹ the relative
curvature associated with a connection ¹% on the Clifford module %. If the
connection is a Clifford connection ¹%[ ­A P !Cl(%), we then denote its
relative curvature by F%/S. In any case, the latter is called the twisting curvature
of the Clifford connection ­A independent of whether % denotes a twisted
spinor bundle or not. Note that this makes perfect sense because of the
fundamental decomposition (5). The decomposition formulas (12) and (14)
have in common that they are “Hamiltonian-like.” That is, they consist of a
second-order operator and a “potential.” There is no first-order operator
involved! Note that the second-order operator of the previous example ¹*¹
is actually of the same form as in the second example. Indeed, it can be
rewritten as ¹*¹ 5 2trg ¹T*M^% ¹%, with % :5 L*(T*M ). This is a very
general feature. In fact, any generalized Laplacian H acting on sections into
a smooth vector bundle % →p M can be shown to decompose as follows
(Gilkey, 1995; Berline et al., 1996; Branson et al., 1998 Esposito, 1998):

H 5 D¹%
1 9 (16)

The second-order operator is called the Bochner Laplacian. It is defined by
a connection ¹% on the vector bundle % as D¹%

:5 2trg ¹T*M^% ¹%. Both the
connection ¹% and the zero-order operator 9 P V0 (M, End(%)) are uniquely
defined by the generalized Laplacian H. Note that the formula (16) is also
sometimes called the Lichnerowicz decomposition. In order to prove formulas
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(12) and (14), one makes extensive use of the fact that, respectively, the
Gauss–Bonnet operator and the spin Dirac operator are associated to the
Clifford connection ¹% [ ¹L*(T*M) on the Clifford module % :5 L*(T*M )
and ¹% [ ¹S^E on the twisted spinor module % :5 S ^ E. As a consequence,
the Bochner Laplacian is also defined with respect to the corresponding
Clifford connection. Indeed, let (%, g) →p (M, g) be an arbitrary Clifford
module bundle and ­⁄ A a twisted Dirac operator. Then we know that there
exists a unique Clifford connection ­A on % which is defined by some given
A P V1(M, End1

CL(%)) such that the Lichnerowicz decomposition reads
(see below)

(­⁄ A)2 5 D­A 1 9 (17)

Here the Bochner Laplacian is defined by the Clifford connection, which
also defines the Dirac operator, and the potential is as in (15). Also in this
more general case, the relative curvature (also denoted by F%/S

­A ) is fully
determined by the “twisting part” of the connection, i.e., by A. However, as
a rule, this does not hold true. By use of (16), we know that a unique
connection ¹̂% on % and a unique potential 9 also exist for an arbitrary Dirac
operator D on an arbitrary Clifford module bundle %, such that

D2 5 D¹̂%
1 9 (18)

However, neither is the connection ¹̂% a representative of the Dirac operator
D nor is the relative curvature in this most general case fully determined just
by the twisting part of some connection representing the Dirac operator at
hand. Therefore, given an arbitrary Dirac operator D, one may ask how to
find the connection that defines the corresponding Bochner Laplacian, and
how to find an explicit formula that determines the potential 9? This question
has been answered (e.g., in Ackermann and Tolksdorf, 1996a, b; see also.
Bismut, 1989, and Tolksdorf, 1998). Note that in the most general case, the
proof of (16) is either local or not very explicit. In particular, there is no explicit
formula that determines the potential of the given generalized Laplacian (see,
however, Branson et al., 1998). In the remainder of this section we will
discuss a formula introduced in (Ackermann and Tolksdorf, 1996a, b). This
formula transparently generalizes the Lichnerowicz formula (14) to arbitrary
Dirac operators. It allows us to determine both the Bochner Laplacian and
the potential of a given Dirac operator on an arbitrary Clifford module bundle.
We close this section with a brief discussion of the twisted spin Dirac operator
with torsion.

Let again (%, g) →p (M, g) denote a Clifford module bundle over a
(pseudo) Riemannian manifold. Also, let D̃ P $(%) be a Dirac operator
compatible with the Clifford action g [see the definition (4) of the previous
section]. Moreover, let ­A P !Cl(%) be an arbitrary Clifford connection,
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defined by a one-form A P V1(M, End1
Cl(%)). Then, by use of the mapping

(8), we introduce the natural representative ¹̃% :5 ­A 1 dj(D̃ 2 ­⁄ A) of the
Dirac operator at hand, such that D̃ 5 ¹⁄ %. We obtain, respectively, for the
connection defining the Bochner Laplacian and the potential of the generalized
BLW decomposition formula (18)

¹̃% :5 ¹̃% 1 v¹̃% (19)

9 :5 g(F%
¹̃) 1 trg(¹̃T*M^End(%)v¹̃% 1 v2

¹̃%) (20)

where the one form v¹̃% P V1(M, End+(%)) is locally given by

v¹̃% :5 21–2 g(em, en)em ^ g(el)([¹̃%
g, g(en)] 1 Gn

slg(es)) (21)

The G’s denote the Christoffel symbols defined by the metric g and (em)
denotes any given local frame in TM with the dual frame (em) in T*M \

Cl(M ). It can be shown that the endomorphism 9 actually only depends on
the connection class defining the Dirac operator at hand (Tolksdorf, 1998).
The formula (18) obviously generalizes the Lichnerowicz formula (14) to
arbitrary Dirac operators. In fact, if ¹̃% [ ­A P !Cl(%) denotes a Clifford
connection, it satisfies the fundamental relation (6), and thus the one-form
v¹̃% vanishes. Note that also in the general case (18), the potential decom-
poses as

9 5
rM

4
1 g(F%/S) 1 “correction” terms involving v

Therefore, in the case of a spin Dirac operator ¹⁄ S^E on a twisted spinor
bundle, the potential (20) reduces to 5 [see formula (15)]. As already stated,
for the same reason, this holds true even in the case of a twisted Dirac
operator ­⁄ A on an arbitrary Clifford module bundle. Consequently, the formula
(18) generalizes the Lichnerowicz decomposition (14) to arbitrary Dirac
operators. Note again that in the case of a twisted Dirac operator, the corres-
ponding Bochner Laplacian is defined with respect to the same Clifford
connection that represents the Dirac operator. Formula (20) is an immediate
consequence of the identity

D̃2 5 D­A 2 trg(a­A) 1 98 (22)

with 98 :5 g(F %
­A) 1 g(¹T*M^End(%)v) 1 g(v)2. Here, the one-form a is

locally defined by a(em) :5 2v(em) 2 g(em, en)g(es)[v(es), g(en)]. The identity
(22) shows that the Bochner Laplacian may even be defined by a Clifford
connection ­A though the potential does not reduce to (15). As it turns out,
this is the case for the Dirac–Yukawa operator discussed below. Therefore,
this Dirac operator is distinguished in that its BLW decomposition reduces to
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D̃2 5 ¹­A 1 98 (23)

For a general discussion of the particular case a 5 0, v Þ 0 we refer to
Ackermann and Tolksdorf, 1996a, b). Note, however, that the result also
depends on the tensor product chosen in (5). Next we will discuss an example
of a Dirac operator which is not associated with a Clifford connection. The
example we consider is the spin Dirac operator with torsion. Let therefore
once more (M, g) be an even-dimensional spin manifold with spin connection
¹S. The corresponding Dirac operator is simply denoted by ­⁄ . In other words,
the Clifford module % we are considering here is just the spinor module once
we have chosen an appropriate spin structure. The Clifford relations are
respected by any metric connection ¹̃T*M on T*M. Thus a a metric connection
can be lifted to a connection denoted by ¹̃S on the Clifford module % [ S.
Note that this is in fact the most general connection on S, which is the lift
of any given connection on the (co-) tangential bundle. It is well known that
the set of metric connections on (M, g) is an affine set which is modeled on
the vector space of torsions (Spivak, 1979). Here, the affine set may be
identified with V2(M, T*M ). Thus D :5 ­⁄ 1 g(t) is the most general Dirac
operator associated with an arbitrary metric connection on T*M, where,
respectively, g and t P V2(M, T*M ) denote the (canonical) Clifford action
and an arbitrary torsion. Correspondingly, we may define v :5 dj(g(t)) and
calculate in this case the connection defining the Bochner Laplacian and the
potential 9 of D. The corresponding calculations are similar to those presented
in Ackermann and Tolksdorf, 1996a, b) and are therefore omitted here. For
more general first-order operators, an analogous calculation was carried out
by Weitzenböck, (1923). Note that the Dirac operator D 5 ­⁄ 1 g(t) is not
represented by a Clifford connection on S since the only Clifford connection
in the case at hand is the spin connection defining ­⁄ .

In the following section, we will consider two Dirac operators inspired
by physics and not associated with Clifford connections. We will discuss
these Dirac operators in some detail since they are important in the context
of a geometrical description of the Standard Model of particle physics in
terms of Dirac operators (Tolksdorf, 1998).

5. THE PAULI–DIRAC OPERATOR

In this section, we will discuss the Pauli–Dirac operator and compare
it with the Dirac–Yukawa operator. We then consider a mixture of both
operators and discuss its corresponding BLW decomposition, which has a
generic form. The Pauli–Dirac and Dirac–Yukawa operators play a fundamen-
tal role in a geometrical description of the Standard Model of particle physics.
In particular, the mixture of both allows us geometrically to describe the full
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action functional of the Standard Model with (Euclidean) gravity included.
We will show in this part of the paper that the Pauli–Dirac operator is related
to charge in a similar way that the Dirac–Yukawa operator is related to mass.
Just as the Dirac–Yukawa operator becomes a “true” Dirac operator when
the weak interaction is taken into account, the Pauli–Dirac operator becomes
a “true” Dirac operator when charge conjugation is taken into account. This
section also intends to give an interpretation of the Dirac operator introduced
in Tolksdorf (1998) (which we will call the Pauli–Dirac–Yukawa operator),
which permits a geometric description of a certain class of gauge theories
within the Clifford frame.

Let (%, g) →p (M, g) be a smooth Z2-graded Hermitian Clifford module
bundle over a smooth Riemannian manifold of even dimension. Let us denote,
respectively, the grading involution and the Hermitian product on the vector
bundle % by x% and ^?, ?&%. We assume the Clifford action to be Hermitian.
The induced “Hermitian” form on G(%) is denoted by ^?, ?&G(%). Moreover,
let ­A P !Cl(%) denote any (Hermitian) Clifford connection and let F%/S be
the corresponding relative curvature on %. We will consider the operator

D :5 ­⁄ A 1 ig(F%/S) (24)

which we call the Pauli–Dirac operator. We assume ­⁄ A to be symmetric
(which is no restriction). Note that g(F%/S) is Hermitian and thus the operator
(24) is not symmetric, which will be important. However, on G(%) this
operator is not a Dirac operator, since its zero-order part (“Pauli term”) is
even with respect to the grading involution x%. Note that this is similar to
the operator originally introduced by Dirac: ­⁄ 2 m (see our historical review).
Here, the “mass” term m is to be considered an even operator and thus ­⁄ 2
m is not a Dirac operator. The Clifford module in this case is a (trivial)
twisted spinor bundle with, say, E 5 C. To turn ­⁄ 2 m into a Dirac operator,
one uses a simple mathematical trick. One just doubles the degrees of freedom
to obtain an additional grading. Therefore, one may consider the operator
­⁄ 2 F on the Clifford module %̃ :5 6 ^ (E ^ E), where F :5 IdS ^ $
and $ denotes an off-diagonal matrix with entries equal to m. With these
conditions taken into account, the operator (­⁄ 2 F) becomes indeed a Dirac
operator on %̃. If we take “diagonal sections,” C :5 (c, c) leads to the action
^C, (­⁄ 2 F)C&G(%̃) 5 2^c, (­⁄ 2 m)c&G(%). Of course, this can be generalized
to arbitrary twisted spinor bundles with a Z2-graded internal space, i.e., E 5
EL % ER. For reasons of covariance, the operator ­⁄ is replaced by the covariant
Dirac operator ­⁄ A and the “internal Dirac operator” is replaced by an arbitrary
odd endomorphism f P V0(M, End2(E)). Finally, in order not to double
count the spin degrees of freedom, one replaces IdS ^ f by xS ^ f. Here, xS

denotes the grading involution on the spinor bundle. The well-known operator
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D :5 ­⁄ 2 F (25)

is called the Dirac–Yukawa operator. The crucial point is that the Dirac–
Yukawa operator is Hermitian and thus the corresponding action ^C, DC&G(%̃)

is real. Therefore, one cannot get rid of the additional “Yukawa coupling”
terms by demanding the action to be real. Of course, this is not a drawback
since these additional couplings should give rise to the masses of the fermions.
However, what is still left is the physical interpretation of the doubling of
the internal degrees of freedom. Fortunately, nature gives us the answer. It
is well known that there are two kinds of fermions: left-handed and right-
handed fermions. So, we may interpret, respectively, EL and ER as the spaces of
internal degrees of freedom of the left-handed and the right-handed fermions,
respectively. Note that if the neutrinos are massless, both vector spaces are
of different dimension. As a result, we find that it is very reasonable to
consider the Yukawa coupling F as defining a new Dirac operator (25) by
doubling the internal degrees of freedom. This is well known.

Now let us return to the operator (24). Since the problem with this
operator is the same as in the case of the mass term in the original Dirac
operator, we are tempted to try the same trick. So let us double the internal
degrees of freedom once more, i.e., let us consider the Clifford module %̃ :5
S ^ (E % E). Note that F denotes the curvature associated with the connection
form A P V1(M, End+(E)). Consequently, this time, the doubling of the
internal degrees of freedom must be realized using the same vector bundle
E. Indeed, the operator (24) becomes a Dirac operator on %̃ with respect to
the grading involution x%̃(c1, c2) :5 (x%(c1), 2 x%(c1)) for all (c1, c2) P
%̃. Let us restrict ourselves to diagonal sections again, C :5 (c, c). This
leads to the action ^C, DC&G(%̃) 5 2^c, ­⁄ Ac&G(%). This time, the additional
coupling term (the “Pauli term”) drops out. And this is what we want to have
since such a coupling leads to inconsistent results, as is well known.

As in the case of the Dirac–Yukawa operator, we must find a satisfying
interpretation of the doubling of the internal degrees of freedom and why it
is reasonable to restrict the fermionic action to diagonal sections. We will
show that this is actually obtained by introducing the concept of charge
conjugation. The crucial point is that the operator (24) is not Hermitian.
Indeed, by considering %̃ 5 % ^ % 5 C ^R % as the complexification of
%, we get D* 5 D 5 ­⁄ A 2 ig(F%/S). Of course, on C ^R%, there exists a
canonical real structure 78 given by 78(c1, c2) :5 (c1, 2c2). Alternatively,
we may write C 5 c1 1 ic2 and thus C [ 78(C) 5 c1 2 ic2. In order to
obtain a real action, we consider the functional

2Re(^C, DC&G(%̃)) 5 ^C, DC&G(%̃) 1 ^C, DC&G(%̃)

Consequently, the Pauli term drops out. Moreover, when we restrict ourselves
to real sections, we obtain
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Re(^C, DC&G(%̃)) 5 2^c, ­⁄ Ac&G(%) (26)

In contrast to the vector bundle E, the spinor bundle S always admits
a real structure, denoted by 7S. We thus obtain an appropriate real structure
7 on %̃ by 7 :5 7S ^ 7E. The action of 7 is as follows: 7(C) 5 7S(C).
Here the latter notation means (a7S(sa) ^ Fa , where (sa) denotes any given
(local) spin frame in the spinor bundle S and Fa [ f1a 1 if2a denotes the
internal degrees of freedom on Ẽ :5 C ^R E (i.e., %̃ 5 S ^ Ẽ). Finally, to
obtain a symmetric form of the Pauli–Dirac operator (24) with respect to
charge conjugation, we note that Ẽ 5 C ^R E . E ^ E, where E denotes
the complex conjugate bundle of E. We then use the following notation:
C :5 (c, 0), C :5 (0, c) P (S ^ E) ^ (S ^ E). The action of the Pauli–Dirac
operator (24) on, respectively, C and C is appropriately defined as DC :5
(Dc, 0) and DC :5 0. Moreover, we denote by Cc [ 7(C) the “charge
conjugate” spinor of C. Next we consider the Dirac operator

D̃ :5 D 1 7D721 (27)

This operator is obviously invariant with respect to charge conjugation 7.
Moreover, when restricted to the real subvector bundle of “particles and
antiparticles”

% ^ %c :5 {C̃ :5 C 1 Cc.7 (C) 5 Cc} , % ^ % (28)

the operator (27) becomes essentially a doubling of the Pauli–Dirac operator
(24). Correspondingly, the fermionic action reads

^C̃, D̃C̃&G(%̃) 5 ^c, Dc&G(%) 1 ^c, Dc&G(%)

5 2^c, ­⁄ Ac&G(%) (29)

We have shown how the concepts of mass and charge are reflected in appro-
priate Z2-gradings when seen from the perspective of Dirac operators. Indeed,
when charge conjugation is taken into account, one may consider the operator
(24) as a Dirac operator.

In what follows, we will give a certain mixture of the Dirac–Yukawa
operator and the Pauli–Dirac operator, called the Pauli–Dirac–Yukawa (PDY)
operator. As mentioned before, this operator plays a significant role in the
geometrical description of the Standard Model of particle physics within the
Clifford frame. We also give the BLW decomposition of the “real form” of
the PDY operator which will be defined below. For this, we denote by ¹̃% 5
­A 2 vC the natural connection associated with the Dirac–Yukawa operator
(25), which we denote by D. The corresponding relative curvature of the
connection ¹̃% is denoted by F%/S

¹̃ . We consider the Dirac operator
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D̃ :5 D 1 ig(F%/S
¹̃ ) (30)

which is called the Pauli–Dirac–Yukawa operator (PDY). According to our
discussion above, this operator is indeed a Dirac operator on %̃. Alternatively,
one may consider the “charge symmetric form” of (30): D̃ 1 7D̃721 on %̃.

Instead of considering the BLW decomposition of (30) in terms of our
formula (20), we consider the BLW decomposition of the real operator .D̃.2 5
1–2 (D̃ D̃* 1 D̃*D̃), which we call the “real form” of D̃. We obtain

.D̃.2 5 D2 1 (g(F%/S
¹̃ ))2 (31)

Note that this is a positive operator, in contrast to the operator D̃2, which was
considered in Toiksdorf (1998) to geometrically describe the Standard Model.

In the case of the Pauli–Dirac operator, we obtain the BLW decomposi-
tion of the real form of (24)

.D̃.2 5 ¹­A 1 1–4 rM 1 g(F%/S) 1 (g(F%/S))2 (32)

where we made use of the Lichnerowicz formula (15).
Finally, in the case of the Pauli–Dirac–Yukawa operator, we obtain the

following BLW decomposition of (30):

.D̃.2 5 D­A 1 1–4 rM 1 g(F%/S) 1 (g(F%/S
¹̃ ))2 2 xS ^ ¹End(E)f 1 IdS ^ f2

(33)

Note that the relative curvature F%/S
¹̃ is defined with respect to the natural

connection ¹̃% :5 ­A 1 vF defining D̃ and is thus more complicated than
the twisting curvature defined by ­A! We have made use of the fact that the
Bochner Laplacian of the Dirac–Yukawa operator is also defined by the
Clifford connection ­A. Consequently, the potential 9 in the BLW decomposi-
tion of D2 reduces to 98 [see formula (23)]. Moreover, we have used that
the canonical one-form j is covariantly constant with respect to any given
Clifford connection.

We finish this section with several remarks: First, the above constructions
can be generalized to arbitrary Clifford module bundles (%, g) →p M (p,q).
However, for a well-defined charge conjugation operator to exist, we have
to assume that (M, g) has at least a spinC-structure. Second, since the imaginary
part of D̃*D̃ (or of D̃ D̃*) is a “traceless” term, it is sufficient to consider
only the real form of D̃ insofar as the trace of D̃*D̃ is concerned. In particular,
this holds true for the trace of the propagator of D̃*D̃ [i.e., the Wodzicki
residue of (D̃*D̃)22, where dimM 5 4], which gives rise to the bosonic action
of the Standard Model of particle physics. Note that the propagator of D̃*D̃
gives rise to a positive functional, whereas this may not hold true in general
for the propagator of D̃2. Finally, we note that from a physical perspective,



Clifford Modules and Generalized Dirac Operators 207

the Pauli–Dirac–Yukawa operator (30) does not yet have the right physical
dimension. Instead of (30), the “physical” PDY operator reads

D̃ :5 D 1 i1 l
g

g(F%/S
¹ )2 (34)

where, respectively, l and g denote a length scale and a “coupling constant.”
It turns out that the length scale is fixed by the mass of the Higgs field
(Tolksdorf, 1998). We argue that the coupling constant may correspondingly
be identified with the electric charge. This will be investigated in more detail
in a forthcoming paper.

6. SUMMARY

In this paper, we gave a brief review of some features of generalized
Dirac operators. In particular, we discussed the decomposition of the square
of an arbitrary Dirac operator. By use of the generalization of the Lichnerowicz
formula, we presented, it becomes evident that the Dirac–Yukawa operator
is a distinguished operator within the Clifford frame summarized in Section
3. Though not a twisted Dirac operator, the Bochner Laplacian of the Dirac–
Yukawa operator is nevertheless defined by a Clifford connection. As we
have mentioned before, the Dirac–Yukawa operator also plays a significant
role in Connes’ noncommutative geometry [besides the corresponding refer-
ence given above, see, in particular, Chamseddine and Connes (1996, 1997);
for an excellent summary of some of the main features of, respectively, the
Standard Model within Connes’ noncommutative geometry and Connes’
notion of a “real geometry,” we refer to Varilly and Gracia-Bondia (1993)
and Varilly, (1997)]. In the second part of this paper, we discussed the
Pauli–Dirac operator, which is another well-known operator in physics. It
turns out to be related to charge in a similar way that the Dirac–Yukawa
operator is related to mass. Thus, from the point of view of generalized Dirac
operators, the notions of mass as well as charge are reflected in specific
graduations of the internal space of fermions. The Pauli–Dirac operator is
unitary equivalent to the Dirac operator introduced in Ackermann and Tolks-
dorf (1996a, b), which gives rise to the combined Einstein–Hilbert–Yang–
Mills functional. The Pauli–Dirac and the Dirac–Yukawa operators have a
“generic” structure and may be considered as the real and the imaginary parts
of a more general type of Dirac operator, which we call the Pauli–Dirac–
Yukawa operator and which includes the full Higgs sector of the Lagrangian
of the Standard Model. The BLW decomposition of the real form of the
Pauli–Dirac–Yukawa operator is straightforward and has to be distinguished
from the corresponding BLW decomposition of the square of the Pauli–Dirac–
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Yukawa operator, which does not necessarily give rise to a positive functional.
Since the PDY operator naturally incorporates both mass and charge (i.e.,
both ways the fermions can interact), one may hope to find further relations
between the notion of charge and mass within the geometry of generalized
Dirac operators as reviewed in this paper.
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